All information systems processing functions within
a systems development or maintenance process
should be guided by written standards and
procedures. The standards should address systems
design, programming, testing, systems
implementation, documentation, and software
maintenance. They should include guidelines for
effective project controls and procedures for
reviewing and acquiring software systems. Standards
provide a means of determining if the installation is
meeting established policy. By defining uniform
methods for performing routine tasks, the standards
manual can affect profits and efficiency favorably.
When used as a training tool, it enables new
employees to become productive in a shorter period
of time. Systems and programming standards must
identify control procedures to ensure program
integrity, restrict unauthorized access, and provide
adequate systems documentation. The procedures
should identify physical restrictions, software
controls, and accounting controls required to maintain
security within the application systems, operating
systems, and data files. The content and format of
the standards and procedures manual will vary with
the size of the installation. Larger installations may
have a multi-volume manual, where each volume
addresses a single topic, such as system design,
programming, documentation, and operations.
Smaller data centers may cover these areasin asingle
manual. All installations should establish basic
written operating standards. The coordination of
these standards into an orderly document improves
overall organization and control.

Documentation is a record of procedures for
performing information systems processing tasks. It
isan accounting of both the essential elements of the
information systems application and the logic of the
computer software programs. Documentation is the
basic source of information for those who audit,
correct, improve, manage, operate, or use the system.
Program documentation is one of the most vital and
neglected areas of information systems. It requires
input from persons who have insight, the ability to
think logicaly, and an adequate knowledge of
programming languages. Management must
participate actively in developing appropriate

standards for documentation. To alarge extent, the
achievement of documentation objectivesis directly
related to the willingness of senior management to
establish the necessary standards.

The relatively recent concept of computer aided
software engineering (CASE) automates the process
of developing and maintaining software.

PROJECT CONTROL

A key factor in awell-managed information systems
facility is the process used to control projects for
systems and applications devel opment, acquisition, or
revision. Often the difference between a successful
project and a problem one is the effectiveness of
project control. Project management, however, is not
asubstitute for technical skills.

Systems devel opment must be monitored closely to
control costs and ensure the creation of well
structured applications. In arelatively small facility,
aformd project control system may not be required.
If management frequently meets with systems
development personnel and uses adequate
management techniques, it can effectively control
projects. However, a more formal approach to
project control is often preferred, and necessary, in
many facilities.

A project control system should employ well-defined
and proven techniques for managing projects and
generating application development records. Each
development task should be identified and tracked to
determine its status. Tasks are commonly grouped
into major development phases to identify significant
project milestones. Although formal project control
systems differ significantly, they should at a
minimum contain:

o Target completion dates for each task or phase of
systems development. A final project completion
date is determined by carefully assessing all tasks
to be performed. Identification of target dates for
tasks or phases provides the substance of project
control. The status of the project can be
determined by comparing actual completion dates

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-1

for parts of the project against planned targets.
Project status reports should be used to present
such comparisons for managerial review.

¢ Measurement of progress against origina target
dates. Project monitoring loses significance when
original target dates are revised continualy.
Although it may be necessary to revise target
dates, progress should be measured against
original targets to better assess time and cost
overruns. If development cost overruns become
substantial, the justification for the project may
need to be reexamined.

* Project control data aids in managing the system
and programming function. Such data is
appropriate for periodic reports to senior
management on project priorities, project status,
resource alocations, target deviations, and
budgets. Examples of such project planning tools
include Critica Path Method (CPM), (PERT)
Program Evaluation and Review Technique, and
Gantt charts.

SYSTEMSDEVELOPMENT STANDARDS

Development of computer application systems
involves many activities. Standards and procedures
should govern each activity. Standards should be
written for:

o Systemdesign - To guide the creation of effective,
efficient, and control-oriented application systems.

» Software analysis and selection - To ensure the
acquisition of quality software that meets the
institution's need.

e Programming - To ensure that desired features
and controls are included in application programs.

e Testing - To confirm that all programs and
systems are tested adequately. Tests should
encompass all conceivable data quality or
processing problems.

e |Implementation - To ensure that a newly
developed system is complete, that it functions as
specified, and that personnel responsible for its
operation (user and computer operations) are
adequately trained.

o Cataloging - To control additions and changes to
the production program library to ensure their

integrity.

Maodifications — To guard against unauthorized
software changes.

» Documentation - To assess the effectiveness of
written material supporting the systems devel oped
or programs changed.

These standards can be used to guide and monitor the
activities of systems analysts and application
programmers.

Systems Devel opment Life Cycle

A common approach to the management of
application software is the process known as a
Systems Development Life Cycle (SDLC) also some
times called Waterfall System Development. There
are severa significant control issues regarding the use
of traditional SDLC methods with large-scale
integrated systems. Current system development
techniques may not permit the timely development
and implementation of a complex system. SDLC
techniques may need to be revamped to provide
more increased flexibility. However, control and
management methods may vary according to the
complexity of the system under development.

Minimum SDLC standards should ensure that project
development is sufficiently controlled to ensure the
integrity of the system. Testing of various stages
within large scale integrated systems may require
innovative techniques. Reference SP-4.

M anagement should carefully consider the cost of the
extensve user involvement in the system
development stage. User involvement is necessary to
ensure the successful implementation of alarge scale
integrated system.

Nevertheless, management must provide more
comprehensive employee training since the adoption
of aLSISwill affect all departments.

SDLC standards need to be flexible, while still
providing maintenance of system integrity during
development to maintain that a system of internal
control. The SDLC identifies the sequence of
activities required in the systems development
process and throughout the useful life of an
application.

These elements are important to any well-defined
systems development process. Each application
system has a life cycle, based on a specific series of

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-2

functions. The cycle is completed as replacement
systems are implemented. Standards should be
established and approved for each phase of the
development process. Use of a corporate SDLC
helps to better plan, implement, and maintain
software systems. The following is a brief overview
of the major components of an SDLC (Figure 12-1).

Figure12.1
Waterfall System Devel opment

SHORT FALLS

= End Users nat adequately involved

Plan jl,
Analyze

Design

Analysis & design material convey Develop
limited understanding

Resists most oppaortunities for change

Integrate
& Test

First view of the software late in the life cycle where
changes are more expensive

Support

Project I nitiation - Plan

Theinitial phase of the systems devel opment process
addresses conceptual changes and determines the
feasibility of pursuing further development. A
feasibility study should be performed to identify the
expected costs and benefits of developing a specific
system. Alternatives to internal application
development, such as purchasing software or
developing a nonautomated system, should be
considered in preliminary evaluations.

Requirements Definition - Analysis

Once a project has been evaluated and approved for
devel opment, system analysis and design (involving
a variety of complex tasks) proceeds. The
requirements definition converts the system concepts
into detailed specifications. The analysis and
specifications must clearly identify user needs and
expectations within the proposed application. This
will facilitate development during the design and
programming phases and should assist in evaluating

vendor software products.
System Design, Development, Test, and Support

Systems design involves the conversion of user
requirements into specifications for programming and
implementation. The involvement of usersis crucial
for ensuring that the application design meets their
requirements. Systems design techniques vary
grestly. However, they should detail the sequence of
program flow, the files to be used, the reports to be
produced, and the controls to be built into the system.
These standards also should identify the content for
design documents and the procedures for review and
approval. Design documents should include:

¢ A system narrative identifying the objectives and
major functions to be performed.

e A system flowchart identifying the programs,
datafiles, and reports.

» Record layouts showing the content for each data
record and file in the system.

o Data element definitions describing each data
field.

* Report layouts detailing the format and content for
each report produced.

o Screenformats showing thefixed fields and those
that are user-modified, including applied edit and
control functions.

» Program specification for each program detailing
program objectives, files required, and edit
routines.

e A test plan validating that programs function
properly and produce the expected results.

e A project schedule establishing expected
benchmarks for various systems development
phases.

The detailed system design can be considered the
most important phase of an SDLC. It should
represent the approved plan or contract between the
user and systems devel opment management.

SOFTWARE ACQUISITION

Many information systems applications for financial

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-3

institutions have been developed by software firms.
Financia indtitutions of all sizes find that purchasing
software is a cost-effective alternative to developing
software systems in-house. Volume sales alow
software vendors to provide powerful and flexible
products at competitive prices.

Vendors aso can provide the necessary technical
expertise for continued product support. However,
software purchases should be analyzed carefully
before any commitment is made. Written standards
should exist for evaluating vendor software and for
guiding the selection process. Since several vendors
should be assessed, a request for proposal (RFP) is
generally used to analyze a vendor's capability to
meet the needs of the financia institution. An
analysis of software products should consider:

o System requirements - The institution should
identify user needs and expectations for the new
system.

o Systems specifications - Input/output require-
ments, interfaces to other systems, and possible
future enhancements should be defined.

* Impact analysis/capacity planning - The impact
that the software will have on existing systems
and hardware capacity should be evaluated.

» A cost/benefit analysis of alternative purchase -
The capabilities of alternative software packages
should be evaluated to determine how the
proposed system specifications can best be met.
A final decision should be reached only after
alternative packages are considered.

» Software support — The institution must identify
respongbility for software support. Many vendors
offer software support and maintenance as part of
their application system package. Vendors have
varying system development processes and
techniques which can be a factor in case of
maintenance. When contracting for this service,
the financia institution must assess both the
technical and financial capahilities of the vendor.

If the system is to be supported in-house, the
institution must assess its own technical resources
and identify:

¢ Financial condition of the vendors - A vendor
should have the financial stability to continue in
business and support its products as contracted.
The institution should continue to monitor the

financial condition throughout the contract term.
If financial stability isin doubt, alternatives must
be developed to reduce any adverse impact from
aloss of vendor service.

A well documented system - A vendor should
provide sufficient documentation to allow the user
to understand how the software works and the
techniques and methods the software uses. Thisis
especialy important if program changes are to be
performed by the purchasing institution. The
format and content of this documentation
probably will not be written according to the
financial ingtitution's information systems
standards. The documentation of program
packages under consideration must be reviewed
prior to purchase to determine if the product
generally meets the financia ingtitution's
minimum documentation standards.

All changes made to application programs and
operating systems must be documented according
to prescribed standards. The financia institution
must have staff with sufficient technical expertise
to maintain the software and the documentation.
Some vendors provide documentation on
magnetic media and this information may be
loaded into the on-line documentation system for
reference purposes. A potential problem in
documentation can arise if the purchased package
requires modification before it is installed. It
must be determined up front who will modify the
documentation with the vendor and/or the
purchasing institution involved in the process.

Escrow agreements - Many vendors do not
release the source code to the purchaser. Thisis
intended to protect their system's integrity and
copyright. The application system isinstalled in
object code. An aternative to receiving the
source programs is to establish an escrow
agreement. In this agreement, which should either
be part of the service contract or exist as a
separate document, the financia institution would
be alowed to access source programs under
certain conditions, such as discontinued product
support or financial insolvency by the vendor.
Adegquate programming and system
documentation also should be required. A third
party would retain these programs and documents
inescrow. Financia ingtitutions should determine
periodically that the source code maintained in
escrow isup-to-date. This can be done by athird
party independently verifying the version number

SYSTEMS DEVELOPMENT AND PROGRAMMING

1996 FFIEC |S Examination Handbook 12-4

of the software.

e Training - The financia institution's personnel
training requirements should be clearly
recognized. Training should cover such functions
as system operations, problem resolution,
input/output controls, file backup, and system
support. Vendor responsibility for training should
be stated in writing and clearly understood by
both parties.

Regardless of whether purchased or developed in-
house, the cost of software should be amortized over
a reasonable period of time recommended by the
institution’ s accountants.

PROGRAMMING STANDARDS

Although creativity in programming is both necessary
and desirable, certain standards are needed to control
the development of efficient software. A variety of
programming techniques may be employed for this
purpose. Standards should establish controls and
procedures that must be followed during the
programming phase. Although it is not possible to
dictate the use of a specific technique in a certain
program, all programs should contain some of the
following controls:

e Accumulating detailed data and proving them to
established control totals. Debit/credit totals,
batch totals, and item counts are examples of this
type of program control.

* Verifying data input in initial program editing.
This alows corrections before erroneous data
generatesinvalid results. Thisis possible for most
applications.

o Usdngfilelabelsfor tapes and disk files to identify
specific files, creation dates, and other information
that establishes unique identity. This technique
guards against invalid processing caused by
computer operators selecting and mounting
incorrect datafiles. To be effective, this control
must be accompanied by an operational procedure
that restricts the operator's authority to override
programmed file label checks.

» Embedding edit routinesin program code to verify
specific datafields. Some examples are:

- Sequence checks that verify that an itemisin
proper order for processing.

- Overflow checksthat prevent a dataitem from
entering a storage field too small to accept it.

- Format checks that verify that data in certain
areas arein proper mode (numeric, aphabetic,
or alphanumeric).

- Reasonableness checks that compare data
against known factors about the dataitems or
classes of data.

- Completeness checks that test to seeif entries
appear in fields that cannot be processed blank.

- Range checksthat compare a data item against
Set parameters.

- Check digits that are generated as
mathematical functions of the remainder of the
fieldi.e., they permit program computation of
the validity of datain input fields.

- Data items that can be compared in different
files or matched againgt prior period dataitems
to determine reasonableness.

Many types of data integrity checks exist. They are
useful in controlling data errors and should be
included in applications programs. Program
documentation should include alisting of all controls.
Such controls include:

» Restart capability - Typically, specific stages of
processing are identified. = Checkpoints are
established between processing stages and restart
points. Data processed before arestart point is
saved. Processing can be resumed at the
checkpoint rather than sarting from the
beginning.

» Transaction logging — For on-line applications,
the logging of all transactions processed or
reflected by input programs provides a complete
audit trail of actual and attempted entries. The log
can be stored on tape or disk files for subsequent
analysis.

» Sandardized program routines - Many standard
routines can be devised and merely embedded in
applicable programs to avoid programming
duplication.

» Exception reporting — Parameters are included in
programsto identify unusua or nonstandard trans-
actions. These uncommon transactions should be

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-5

captured and recorded on exception reports for
subsequent analysis. Exception reporting is a
common method of control.

TESTING STANDARDS

Asinthe design phase, testing is an important phase
of the programming process. Here the design and
overal reliability of the application system is proven.
Tedts should be conducted using predetermined data
under controlled conditions. This ensures that data
will be processed correctly, and reliable output will
be produced in the desired format. Strict standards
should be developed to govern the testing process.
Standard testing procedures should require:

¢ A documented test plan - Thisidentifies specific
files, data fields, calculations, and processing
routines to be tested. It also should state the test
periods e.g., daily and end-of-month.

o Anparallel test of new application systems - This
output can be compared with that existing to
determine processing validity.

* Independent verification of test results by user
representatives - Often users will assume
complete responsbility for preparing test data and
conducting tests. Thisis commonly referred to as
user acceptance testing. Final test results should
be reviewed by all affected parties, including
computer operations personnel.

e Aredriction against the use of live filesin testing
to prevent destruction or alteration of live data -
A copy of a live file can be made to use for
testing. Stress'volume tests should be included to
ensure that the system can function at peak
periods of transactions.

e The simulation in test data of all possible error
conditions to ensure that the program effectively
handles all situations - Although it is difficult to
anticipate every error condition, test standards
should specify that al abnormal processing
conditions be tested. Inadequate testing is often
responsible for processing errors that materialize
months after the application system becomes
operational. Test data generators (software) can
aid in developing complete test data.

e A thorough test of any changes to existing
programs may include regression testing (testing
of unchanged code) - Often a simple program

change can trigger a malfunction in an apparently
unrelated area of a program or system. ldeally, a
completetest of all program conditions should be
performed each time a logic change is made.
Program changes made in haste are often
responsible for processing malfunctions and
unwanted expenditures of programmer time in
researching problems. Also, if copies of livefiles
are used for testing, precautions should be taken to
avoid any mix-up between test results and regular
output reports.

SYSTEM IMPLEMENTATION

An institution should have written standards for
implementing software changes and new systems to
ensure that they are ready for production.
Implementation standards should require:

» Documented acceptance of the application system
by users and computer operations department.
This verifies that the programs have been tested
thoroughly and are ready for production.

e Complete user and operator run manuals
describing each of the processing steps. Manuals
must be employed in application testing to
identify confusing or invalid operational
instructions. The quality and reliability of such
manualsisvital to successful information systems
operations.

o System training for al users and computer
operators. They should be specifically prepared to
handle all known abnormal processing and data
error conditions. Training should focus on
following written procedures.

o Complete documentation before implementation.
Analysts and programmers often tend to delay
completion of documentation in favor of
beginning the next project. Although
documentation is generated during the design
phase, it must be completed before this phase.

System Evaluation

A post-implementation review should be conducted
shortly after the application has begun to operate.
The review is conducted primarily to assess the
operationa performance of the application beyond an
initial shakedown period. All parties actively
involved with its operation should be interviewed and
specific problems noted. Additionally, the relative

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-6

success of the project should be gauged by comparing
planned and actual costs, benefits, and development
time. The results of the review should be
documented in a post-implementation evaluation
report presented to management. Post-
implementation reviews should include:

» Planned development time and cost compared to
actual time and cost - Management should be
aware of projectsthat dramaticaly exceed planned
cost and timetargets. Future project selection and
planning should be based on past experience.

» Design objectives - It should be determined that
the application functions according to design
specifications.

» Potential savings (if applicable) - Actual cost
savings over a controlled period should be
compared to the original estimated savings for a
similar period. If the planned benefits do not
materialize, reasons should be reviewed.

 |dentification of operational problems - After the
application has been in use, operational problems
not identified during testing are likely to appear.
The post-implementation review can identify
problems and suggest future improvements.
These secondary modifications are often important
in perfecting the system.

¢ Non-monetary benefits - Planned and actual
benefits should be compared to assess the project's
success.

SOFTWARE MAINTENANCE

Some modification of information systems programs
will be necessary during the application life cycle.
Changes may be required by program problems,
variance in internal operations, competitive demands,
or other factors, such as regulatory changes.
Whatever the justification, program changes must be
strictly controlled and documented to prevent
fraudulent or inadvertent modification.

Program Change Control

Requests for program changes should be documented
on astandard change request form. The form is used
to describe the request and document the review and
approval process. It should contain:

» Date of the change request.

» A control sequence number.

* Program or system identification.

* Reason for the change.

» Description of the requested change.

» Person requesting the change.

* Benefits contemplated from the change.
* Projected cost.

o Signed approval authorizing the change,
including, a a minimum, the user, appropriate
level of information systems personnel, and audit
(at least for significant changes).

 Name of programmer assigned to make the
change.

* Anticipated completion date.

e User and information systems approval of the
completed program change.

* Implementation procedures (steps for getting the
program into the production library).

e Implementation date.

o Audit review of change (if deemed necessary).

¢ Documented sign-off.

Request forms can be pre-numbered or assigned a
control sequence number as they are used. They
might be filed numerically or by application.
However maintained, the request forms should
provide an accurate chronological record of the
description of all changes to production programs.
These records enable:

* Theuser totrack al requested changes accurately.

e Information systems management to monitor the
number and status of changes and allocate them to
proper cost centers.

e The audit department to review significant
changes for authorization and conformance to
established standards.

Copies of the program change forms ordinarily
should be distributed to the requestor, the system

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-7

user, and the programming unit. Depending on the
internal control process, the audit department may
either require a copy or have access to copies.
Notification of program changes to the audit
department should not constitute or replace an audit
of the program change process.

Both the user and programming management should
review and approve change requests. This allows
each unit to be aware of pending changes and clarify
the specific request. Requested changes should be
screened before acceptance to determine alternate
methods of making the changes, the cost of the
changes, and time requirements for programming. A
risk analysis model also could be applied.

Strict procedures should be established to control the
movement of modified programs into the production
environment. These procedures should identify:

» The security of the programs before production.

e The approval process required to promote
programs to production.

e The personnel responsible for placing the
programs into production.

Once program modifications have been completed, all
program codes (load module, object code, source
code, patch code, etc.) should be secured. Thiswill
provide some assurance that any program catal oged
to the production environment is an unaltered version
of the tested and approved program.

The program approval process should include
verification of test results, inspection of the code, and
verification that the source code and the object code
match. Verification of test results should be done
according to testing standards.

A list of modified programs should be compared to
the authorized change documents to determine that
only approved changes were implemented.

Programming personnel should not be responsible for
moving programs into production libraries. This
responsibility should be assigned to an independent
quality assurance/production control function in
larger financial institutions or to supervisory
operations personnel in smaller ones.

Systems programmers must modify operating
systems periodically to resolve operating problems or

implement enhancements. Control procedures for
modification of operating systems should parallel
those for changes to application programs. This
includes prior author-ization, documentation, and
review of the change. The absence of sound controls
and documentation can cause problems when new
releases of operating systems are installed.

All program changes should be fully documented.
The approved program change request form usually
can provide most of the needed documentation.
Revisions to program documentation should occur
when a change is implemented.

Temporary Program Changes

Occasionally, the need for a program change arises
that must bypass the norma change procedures.
Such a change might be required to restore
production processing. These immediate changes are
usually called patches, program temporary fixes
(PTF), or temporary program changes (TPC).
Sometimes the program object code is changed
directly. In other cases, temporary changes to the
source code can be made in a separate version of the
program. The use of such techniques should be
strictly controlled to prevent unauthorized changes
and to ensure that approved changes are made
correctly. The following controls should be adhered
to:

o All temporary changes should be approved in
advance by supervisory personnel.

 |f the source code is changed, altered instructions
should be reviewed by a knowledgeable
Supervisor.

e A form should be used to document temporary
changes, although it often cannot be completed
until after the change is made. The form should
identify the change, indicate the reason for the
change, detail the instructions altered, identify
who made the change, the date it was made, and
provide a signature of authorization.

o After a temporary change is made, the normal
program change procedure should be completed as
soon as possible. In the event a patch or PTF is
made, the source code must be altered and
recompiled to replace the patched object code.

INTEGRATED SOFTWARE SYSTEMS

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-8

Application software that combines multiple banking
applications and processing functions is known as
integrated software. Many financia institutions are
converting to integrated systems to meet competitive
demands, improve timeliness of information, foster
operational efficiency, track the cross-selling of
available services, and ease the introduction of new
products.

Conventional software applications, such as demand
deposits and installment loans, are designed to
operate as separate systems. Each application hasits
own master files, transaction files, and unique
program logic. Usually, there is little or no shared
data between applications. In addition, programs that
provide processing instructions for common
functions, such as calculations, accounting, record
structuring, or printing are unique to each application.

To improve the efficiency of applications systems,
integrated systems were developed. In more basic
system designs, integrated software is used to link
separate applications. 1n these systems, data common
to each application is stored and accessed through a
customer information file (CIF, may also be called a
central information file). The records might include
customer(s) name, address, account number, and
balance. Some of the datais maintained directly in
this CIF system. Other datais transferred daily from
the processing applications to the CIF. By
consolidating this data from separate applications, all
customer relationships with the institution can be
accessed quickly. This improves operations,
increases controls, and allows better customer
service. Thisdesign has been particularly beneficial
to tellers, customer service representatives, and
managers. This CIF concept differs from a data base
management system (DBMS), since the files are till
sequentially accessed. Another differentiation
between CIF and DBMS is that CIF tells you the
name and address of accounts, while DBMS stores
the actual data.

Large Scale I ntegrated Systems

Certain fully integrated systems combine multiple
applications into a single processing system. These
large scale integrated systems (LSIS) require a
complex design. The system architecture may be
horizontal or vertical. Under a horizonta structure,
applications such as deposits, loans, and general
ledger are linked. Under a vertical structure,
functions are linked. For example, ateller transaction
is processed at the teller station, additional

transactions and entries are generated for operating
departments affected by that teller activity.

As part of the design, integrated systems often
employ data base management technology. Their
processing structure may use combinations of batch,
on-line, or memo posting methods. See Chapter 25
for additional information on FFIEC SP-4:
Supervisory Policy on Large Scae Integrated
Financial Software systems.

Integrated software systems are advantageous,
because they:

* Increase efficiency and reduce unit processing
costs through standardized operating techniques.

o Eliminate redundancy in datafiles.

e Provide tools to increase product lines and
customer relationships.

« Enablefinancial institutions to meet competition
generated from forces outside the banking
industry.

e Improve the timely delivery of information
throughout the institution.

* Allow more informed management decisions.
Managing the Project

A commitment to an LSIS sets the course of an
institution's technology, management information
systems (MIS), and delivery systems for several
years. Although large scale integrated systems offer
substantial advantages, their inherent complexity
requires more formal development and maintenance
procedures, specialized audit techniques, and senior
management commitment. These are essentia to the
successful implementation and operation of large
integrated systems.

As financia ingtitutions convert to integrated
software systems, many experience considerable
difficulties. Some institutions spend millions of
dollars and years of conversion and implementation
time, only to abandon the project.

To avoid these difficulties, factors which should be
considered by management, afull commitment to this
type of project include:

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-9

e The financial condition and viability of the
vendors when evaluating systems.

o Thefinancid impact on the ingtitution, in terms of
not only the initial cost, but also the time and
resources required for successful installation.

* |f the system uses real-time data base technology,
the cost of data backup and recovery measures, as
the entire data base must be backed up
simultaneously.

» Thetime and capability of a backup computer to
test the disaster recovery plan of an LSIS.

¢ Whether SDLC methodologies need to be
modified because of the increased complexity of
the software and the difficulty of assuring system
integrity (seemingly simple program changes can
have unpredictable results in a multi-application
system).

¢ Whether audit and control issues are adequate for
real-time integrated systems.

¢ Whether system access is difficult to control and
monitor, especially when using dial-up access.

e Whether audit trails address system-generated
transactions sufficiently.

Management Responsibilities

The decision to acquire or develop in-house LSIS
should be preceded by a strong and independent
management planning process. This should include
a thorough assessment of existing software
performance. Also essential is adetailed analysis of
additional capabilities necessary to accomplish the
ingtitution's strategic business plan.

The complexity of the integrated software and its
impact on the entire organization requires a
commitment from senior management for the project
to be successful. Responsibility for the conversion
should be identified clearly and established at the
senior management level.

Theindtitution's board of directors should review the
project often to maintain control over the complex
process of implementation and to ensure completion
within established parameters. Board reporting
formats should be established at the beginning of the
project. The board must continue its oversight

responsibilities after implementation.
OPERATING SYSTEMS

Current generation computers differentiate between
application programs and operating
systems/supervisor programs. The operating system
controls all input, output, and interrupts. It also
controls program scheduling and hardware resource
allocation.

The operating system:

* Increases system throughput by overlapping input
and output operations with processing.

e Improves user turnaround by permitting
simultaneous processing of applications.

» Simplifiesimplementation of new applications by
providing general purpose utility programs,
thereby reducing the number of programs that
must be written.

o Assists programmers by relieving them of the
burden of writing logicad and physical
input/output control instructions.

e Improves overall operationa efficiency and
control by providing:

- Job scheduling.

- Analyses for job accounting and computer
system use.

- Control over programs stored in the computer.

- Control over accessto and use of the datafiles.

- Control over use of al hardware resources.

Mogt operating systems contain a significant variety
of optional features. Specific features can be selected
for implementation in individual installations. Since
some features change the processing and can either
add to or overcome controls, arecord of them should
be kept.

An operating system generally consists of the
following programs (Figure 12-2):

Control programs. The control programs provide
control over a continuous series of jobs, the workflow
within the system, and the input/output operations.
Control programs consist of two basic components:

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-10

Figure 12.2
Sample Basic Elements of an Operating System

Operatinlg System

Control Programs Processing Programs

Supervisor Language Translators

Scheduler Service Programs

» The supervisor program controls how computer
system resources are used. It coordinates all
processing to assure that each program receives
the services requested. The supervisor program
normally responds through an interrupt system
and a specialized set of privileged instructions.

» The scheduler program accepts job instructions,
allocates input/output devices, initiates the
execution of processing programs, and
mai ntains communi cations between the system
and the operator.

For efficiency, only the control program and afew
of the most commonly used service programs will
reside in memory at all times. The resident
memory portion of the operating system is
sometimes referred to as the nucleus. All other
service programs reside in alibrary, usualy on
magnetic disk.

Processing programs. Each operating system
provides a comprehensive set of generalized
programs designed to assist the user. Some of the
current programs are:

¢ Language trandators to assist programmers by
tranglating application programs written in a
high-level language into machine instructions.
The majority of mainframe computer
manufacturers provide the following language
trandators:

- COBOL. Thisisan acronym for COmmon
Business Oriented Language. Thislanguage
is best suited for commercia or accounting
functions.

- FORTRAN. Thisisan acronym for
FORmulaTRANsSlator. FORTRAN isan
algebraic language and is well-suited for
scientific and engineering applications.

- BASIC. Thisisasimplified language
similar to FORTRAN. It isan acronym for
Beginners All-purpose Symbolic Instruction
Code. It differsfrom FORTRAN, sinceit
can function in an interactive or
conversational mode.

- RPG. Thisisan acronym for Report
Program Generator. RPG was originally
indented to permit the user to write simple
report programs with minimum effort. Itis
now used as a stand-al one programming code
(RPG-1l and RPG-II1).

- Assembler. Thisisalow-level language.
Although difficult to code, it may result in
more efficient programs. The use of
Assembler language allows bit level data
access and usually makes all machine
instructions available to the programmer.

- C. Although primarily a microcomputer or
workstation language, it is gaining popularity
in DEC/VAX systems because of its
portability. An extension of C called C++,
an object oriented program, is expected to
gain popularity in the future.

Service programs to provide routines for
commonly performed functions. Examples
include linkage editors, sort/merge, library
maintenance, data management, and
manipulation. These programs can be divided
into two basic groups:

- System service programs. These programs
are called by the supervisor in response to
interrupts. The user may, in some cases,
change priorities or provide parameters, but
does not execute the program or routine.
Some examples of system service programs
are

Open/close macro instructions for datafiles.

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

Program check and memory dumps.
Data file access routines.

Routines for loading and executing
programs.

Job accounting routines.

System error checking routines.
Routines for allocating memory.
Spooling routines for input and output.

Queuing routines for entry of jobs and
assignment of priorities.

Communication programs in on-line
environments.

- Utility programs. The following genera
purpose programs are initiated directly by the
user:

- Sort/merge programs for sorting and
merging data files together.

- Linkage editor programs to link programs
that have been compiled or assembled by a
language trandlator. (When a program is
too large for memory, the linkage editor
can be used to divide the program into
overlays.)

« Datafile manipulation, copy, or print programs.
e Program library maintenance routines.
PROGRAMMING PERSONNEL

Application Programmers

Application programmer activities should be clearly
defined. Accessto programs outside the
programmers' individual responsibility should be
restricted. Maintenance expertise should exist for
each major application, and responsibility assigned
to specific programmers. Programmers not
assigned to maintain or develop specific programs
should have access restricted only to such
programs.

If application programmers are allowed to write

programs in low-level languages, such as
Assembler, they should not be permitted to execute
instructions generally restricted to the operating
system.

Programmer use of storage dumps should be
restricted, so that only those persons authorized to
use specific dumps have access to them. Storage
dump listings and program source listings used by
programmers should be secured when not in use
and destroyed when no longer needed.

Systems Programmers

In many organizations, a distinct group of highly
skilled programmers must maintain operating
systems, teleprocessing control systems, data base
systems, and develop supportive applications.
Such programmers are generally known as systems
programmers.

Larger data centers may refer to their systems
programmers as the technical support group. This
group serves as liaison with manufacturer system
software support personnel, application
programmers, and the information systems
operations staff. Group responsibilities for
computer operations support include:

» Controlling program libraries and data sets.

¢ Maintaining operating system software and data
base software.

¢ |dentifying access methods.

» |Installing other support software for use by
operations, systems, and programming
personnel.

¢ Allowing add-on systems, such asATMs, to
function.

The complexity of the technical support activities
hinders the effective monitoring systems
programming efforts. Written standards should be
developed and enforced to monitor and control all
programming activities. A clear distinction
between the application programming and systems
programming duties should exist.

PROGRAM SECURITY

Strict security should be maintained over accessto
and use of computer programs with such security

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-12

being physical and/or logical. Data security should
be addressed prior to the installation of such a
system. Existing data security systems may not be
adequate for a complex integrated system,
particularly one using on-line real-time processing.
Each individual function should be controlled, e.g.
access controls, file main-tenance, inquiry, and new
accounts. Reference SP-4. Procedures should
restrict unauthorized access to:

* Application programs.

+ Operating systems programs.
o Datafiles.

¢ Documentation.

o Computer equipment.

In addition, periodic supervisory review of activity
logs, time records, and other reporting techniques
can be used as a monitoring technique. Specially
designed software programs may be used to flag
exceptions or changes to libraries.

At least three proprietary program librarian systems
offer additional technigques to monitor program
security. These systems can protect source and
object libraries, maintain program version numbers,
produce system activity logs, retain a chronological
record of actual program coding changes, and
restrict operator access to unauthorized functions.
Since program devel opment or modifications aso
can be performed from microcomputers after
downloading program files from the mainframe, at
least one librarian system offers increased
monitoring of accountability for this type of end
user access.

Systems a so can alter or delete programs or data.
This capability is contained in utility programs that
are usually supplied by the manufacturer. Systems
utility programs are valuable tools when used
during program debugging, file maintenance,
cataloging, or even daily operations of the data
center. However, certain programs can be used to
alter core storage, data files, and object code; enter
the supervisor state; and catalog, purge, and rename
programs. Such action can be justified occasionally
when data becomes garbled or can be unjustified
when an improper action is contemplated. Most
computer manufacturers supply these programs as
part of the operating system. Programs, such as
DITTO, IMASZAP (Superzap), IEBGENER,
MSHP, IEBRENAM, IEBUPDAT and IMASZOT,

should be controlled to prevent unauthorized use.
Manufacturer utility program manuals can be
consulted to determine programs to be controlled.

Unauthorized use of system utility programs can be
controlled in several ways. These controls,
however, will not be effective, if they unnecessarily
impede operations. System utilities can be
controlled by:

* Removing utility programs that have data or
program altering capabilities from the system
catalog. Place these specific utilities, which are
on machine-readable media, under the physical
control of the shift or operations supervisor.

* Installing a password system on all program
libraries, including the system utility library. If
password protection is used, measures must be
taken to control accessto passwords.
Passwords should be changed periodically.

» Using automated librarian systems. Several
automated librarian systems that provide
program security are available from equipment
manufacturers and software vendors. Such
programs restrict access to the program library.
They can produce daily reports identifying each
program that was accessed and any program
changes that were made.

Even the most sophisticated program security
system will fail, if management does not establish,
implement, and maintain adequate internal and
operating controls. Standards and procedures for
all aspects of program development, processing,
and maintenance are necessary. These must
identify control responsibilities and processes for
documentation, review, and approval of various
programming activities. Supervision of these
functions is imperative for establishing and
maintaining program integrity.

DOCUMENTATION STANDARDS

The value of documentation is derived from its
accuracy, timeliness, and completeness. Well-
documented systems are easier to maintain and

convert to new systems. Good documentation also
facilitates the rotation of personnel/separation of
duties, and supports the continuity of operationsin
the event of key personnel turnover. Program
documentation is often time consuming and

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-13

regarded as non-creative. However, it isthe most
convenient method of determining program
functions. Furthermore, inadequate documentation
can often lead to alack of administrative control.

There are no universal documentation standards.
The American National Standards Institute (ANSI)
has approved standard number 1063 devel oped by
the Ingtitute of Electrical and Electronics Engineers,
Inc. (IEEE) which applies to software user
documentation; however, this standard does not
apply to design, development, or changes which
involve modification of source code. Effective
documentation procedures require the invol vement
of financial institution and information systems
management.

As astarting point, common practices in the
financial institution information systems industry
should be reviewed. The development of
documentation standards could be a process of
adaptation rather than origination.

The development of documentation standards will
require analysis of the financial institution's current
information systems environment and projections
of future requirements. After the general scope of
the documentation is defined, the format must be
organized in alogical manner. Various methods
and procedures creating documentation should be
investigated. Each step of the process should be
reviewed and evaluated. When documentation is
complete, plans should be implemented to update
and revise it as the financial institution's needs
become more sophisticated and diverse. The
standards and procedures manual should contain
standards for documentation. |If the institution
allows end user modifications of programs from
microcomputer or LAN systems, the institution also
should specify the level of user documentation
which isrequired.

Regardless of the method used by the installation to
organize its operating standards, procedures and
requirements for developing and retaining program
documentation must be included. The essential
elements of program documentation follow.

APPLICATION SOFTWARE
DOCUMENTATION

Each application in production should be supported
by a complete set of program documentation. For
each application, documentation should contain a
problem definition, application system and program

descriptions, operator and user instructions, and
records of acceptance of the system. Accessto the
documentation should be restricted. Personnel
should have access to only those sections of the
documentation directly related to their job
functions.

The following further describes documentation
sections:

¢ Problem definition - Provides a clear, logical
and formal record of the problem to be solved.
The contents of the problem definition may
include many of the conceptsin the below
example. (Figure 12.3)

- Project background and project request
(usually by the potential user).

- Minutes of steering committee meetings or
copies of policy decisions relating to the
proposed job.

- A problem statement defining the purpose of
the proposed program.

- Estimated and incurred costs.

- Programmer-hours forecast and incurred.
- Basisfor decisions.

* Application system description — Provides an
overview of thetotal application and ties
together the individual computer programs
within the application system. The application
system description may be subdivided as
follows:

- System flowchart. Indicates the source and
nature of the input, appropriate automated
and manual operations, and the nature and
disposition of output. The system flowchart
illustrates the flow of the work through the
application system (Figures 12.4 and 12.5).

- System narrative. Describes the general
outline of the application system, the related
environment or computer system in which
the program will operate, the operations it
affects, its users and the interrelationship of
its uses.

Record layout schematics. Reflect the format of
data items on cards, magnetic tapes, paper tapes,

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-14

or disk tracks. Disk and tape layouts contain may logically describe the demand deposit

additional information on record size, blocking master file for the same reason.
factors and the layout and contents of internal
labels (Figures 12.6). - Special code. Identify various types of
transactions, activity accounts or other
- Print layouts. Reflect dataitems output to special indicators.
print, showing columns, column headings,
number of lines, spacing, and report titles. - Control function. Describe the accounting
and operating controls. On-line systems
- Filedescription. Reflects the collection of should include a complete security narrative
related records that form afile for the and alist of users having authority to inquire
information system processing application. and update. Methods needed to maintain
A file description might logically describe an security also should be described. Restart
interim file, such as the sorted demand and recovery procedures should be detailed if
deposit transaction file, in order to further applicable.

define requirements for processing. It aso

Figure 12.3
Sample Problem Definition Statement
DATE PAGE
REFERENCE # —
PREPARED BY
REVIEWED BY —

Problem Statement
Payroll Systems Flow

Problem

The daily time sheets are added aach day. Al the end of the week all time sheets are checked for
completeness. Each time sheet must be filled out completely with all hours charged to speclfic jobs.
At tha same time the time sheets are checked, they are sorted by employee number.

Hours are added for each empioyee and postad to the payroll register. The tolal of all hours posted
is checked against the add tapes to insure accuracy of the posting. Each employee's gross pay is
determined with the aid of the payroll master file and is posted to the payroll register.

All deductions are calculated for each employee and posted 1o the payroll register. Net pay Is
determinad for each employee and posted to the payroll register. The payroll master file is updated
to include the current period's payrol.

Description of input

The principal input documents to the payroll are the daily time sheets and the updated payroll
forms showing new employeaes, pay changes, eic. The updated payroll forms are used to updated
(correct) the master payroll file prior to starting the payroil.

Description of Qutput

Payroll checks are typed from the information contained in the register. Net pay lotals of the typed
checks and the register are compared to be sure the typing is accurate. The payroll register and
daily time sheets are filed by payroll date.

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC |S Examination Handbook 12-15

Figure12.4

Sample Flowchart Symbols

Manual Operations Symbol
Used for any off-ine, manual operation (i.e., compare
conirol totals, investigale differences).

Punched Card Symbol
Usad for an input/output function in which the medium
Is punched cards.

Magnetic Bpe Symbol
Used for input/output function in which the medium is
magnetic cards.

Used for an input/cutput lunction in which the medium
is a document (i.e., input—magnetic ink cadad
checks; output—printed listing).

Punched Type Symbol
Used lor an input/output function in which the medium
is punched tape.

Communication Link Symbol

Used for an input/output function in which information
is transmitted automatically from one location 1o
another,

Terminal Symbol
Usad 1o represent a terminal point in a system; a point
al which dala can enler or leave a sysiem.

\/
a
Q
= e
—
-

Gomputer Operation Symbol

Used for all compuler operations. Computer typs, run
name, and run number should be indicated within the
symbol.

—_— Annotation Symbol

|l Used to add descriptive comments or explanatory
notes as clarification. The veriical line and ihe broken
lina may be drawn either on the right or he left of the
symbol. It is conriected to any symbol al a point where
the annotation is meaningiul by extending the broken
line in whatever fashion is appropriate.

* Program description - Describes the details of the
individual programs and should include:

- Program flowcharts (if applicable). Present the
logic and flow of the program, subroutine or
module within a major program. This
documentation also may be termed a block, a
logic diagram or logic chart. Flowcharts may
be necessary for complex sections of programs
and for programs written in low-level
languages. Automated flow chart packages are
available which will either automatically flow
chart a program based on source code or will

< (]

Connector Symbol

O Used to represent a junction in a line of flow. A set ol
Iwo conneclars is used 1o represent a continued flow
diraction when the flow is broken by any limitation of
tha flowchart.

On-line Storage Symbol

Usad for all input/outpul operations involving mass
storage davices thal can be accessed on-line (i.e.,
disk storage, magnetic drum, data cell, CRAM, RACE).

OF-line Storage Symbol

Used for any ofi-line storage of information, regardless
of the madium on which 1he information is reconded
{i.a., filing cabinets, tub files).

Auxiliary Operation Symbol
Used for an off-line operation performed on equipment
ot under 1he direct control of the computers central

o0l

processing unit {i.6., sorter, collator, accounting
machina, card-lo-tape convenor).

Manual Input Symbol

Used for an inpul/output function in which the
information is entered manually, a the lima or
processing through an on-line keyboard, remote
terminal, switch setlings or other ke methods.

Display Symbol

Used for inpul/output function in which the information
is displayed for human use at the time or processing
through cathode ray tube, video display device,
conscle printer, plotler or other like method.

Basic Input/Output Symbol

Used for the input of information lor processing or the
output (recording) of processed information. Amanual
olf-kne operation not requiring mechanical aid.

Decision or Branch Symbof

Used to document points in the program where a
branch 1o alternate paths is possible based upon
variable conditions.

eqabl e the programmer to flow chart a program
without the need for drawing the chart
manually.

Decision tables (if applicable). Supplement or
replace flowcharts for description and
documentation of more complex programs.
The decision table is a tabular representation of
the program logic that specifies all conditions
and action relationships according to a set of
user defined rules (Figure 12.7).

- Table description. Present sets of data items

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC |S Examination Handbook 12- 16

stored in tables for reference at various points comments and meaningful data names.

in a program. Description of such tables and Program listings and narratives are the most
their value ae a necessary part of basicitemsin program documentation. Many
documentation. of the other elements of program
documentation can be derived from the
- Flagsand switches. Describe program tests for program listing. Thelisting should be updated
specified conditions which are either present or when programs are changed. With paper
changed, depending on the flow of instructions reduction generally mandated, institutions are
dictated by the logic of the program. either using microfiche for listings or retaining
source listings on-line with appropriate access
- Program change and system modification controlsin effect.
forms. Describes a change to an application _ o
program, application system or the operating - Programmed controls. Describes all editing
system showing the result, benefits to the user performed by the program.

and proper authorization. A detaled
explanation should be maintained (Figures
12.8 and 12.9).

o Operator instructions - Explain how a particular
job is performed and how operators should
respond to certain system requests or when halt

— Program listing. Should contain nontechnical conditions

Figure12.5
Sample System Flowchart

OM-US

Sz SR
AND

DEPOSITS

PRoOE A
CAPTURE LISTING POSTING RUN BALANCE

oLD

S10P NEW STOPS &
HOLD HOLDS AND
FLE CHANGE S

STOP ROLD
FLE
MAINTENANCE

5
3xa
Zn"

TAPE SORT ;fo":, STATEMENT

STATEMENT FOR THIS
e W AR EAY;

SORTED
ITEMS

STOP PAY
RUN

Y
;

aeo'.rgnceo
)
VARKOUS
EXCEP TIOM EXCEPTION
RUN REORTS

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC |S Examination Handbook 12- 17

Figure 12.6
Sample Record Layout

PAGE I

]

1 1) Fl |

al ol

s-lllllll[llmlllllllIIlr-llllllllllﬂllllllllle-llll]lIlII

1

IEENNNSAER NSRS IEEEER RSN NRAEREEERTIRERREREN

]

nllll[ll”[ﬂllllllllllf-lllllllI[HlIllll[IlmIllllllll]

'llllllllll"lIlllllIlIzvlHIIH[[HIHIIIIII"IIIIIIlllﬁ

sl LT DV PP LT AP PP T T Tl TTTTTTT TR T T TT]

EILE NAME

LOC| NAME

LOC] NAME

STORAGE MEDIUM

NUMBER OF CHARACTERS RECORD
NUMBER OF RECORDS BLOCK
ESTIMATED NUMBER OF BLOCKS
FIXED VARIABLE LENGTH

OUTPUT OF

3ivg

INVLINSNOD
HIANNN dM

USING PROGRAMS

DESCRIPTION

occur. This documentation should include only
information pertinent to the computer operator's
function; program documentation such as source
listings, record layouts, and program flowcharts
should not be accessible to the operator. Operator
instructions should be thorough enough to permit an
experienced operator who is unfamiliar with the
application to run the program successfully without
assistance.

e Usar manuals (see the section on user manual
documentation).

* Record of acceptance - Documents the formal
acceptance of the completed application program
modification. At a minimum, formal acceptance
should be abtained from:

- User department. Should indicate that test
results have been reviewed and that the system
meets specifications.

- Information systems department management.
Should indicate review of test results and

review of test results and audit/control
functions.

- Information systems operation. Should
indicate review of run instructions and
acceptance of any additional hardware
demands and run time.

- Documentation librarian function. Should
indicate review of documentation for
completeness and compliance with standards.

When developed or modified in-house, operating
system software must be supported by comprehensive
programmer and user documentation. Regardless of
the source of operating system and other support
software, standards and procedures for maintaining
such documentation must be developed by the
financial institution.

MAINTENANCE OF DOCUMENTATION

The documentation librarian function is responsible
for the control, retention, storage, and distribution

control functions. of master documentation files. The exact
procedures
- Audit department. Also should indicate
SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC IS Examination Handbook 12-18

Figure 12.7

Sample Decision Table
DATE PAGE
REFERENCE NO.
DECISION TABLE PREPARED BY
RECEIVED BY
STUB ENTRY
CONDITION RULE NUMBER
5]16|/7]|8]9 10111213 [14]15p6 |1718 |19]20
ACTION RULE NUMBER
516{7[8|9 10111213 [14|15])6 |178 [19]20
PAGE OF

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-19

Figure 12.8
Sample Program Change Request

DATA PROCESSING PROGRAM CHANGE RECORD

Program Name or Description Change Number
Program No. Date Change Effective
Change Initiated By Date
Change Request Approved By Date

Description of Purpose or Reason for Change

Description of Changes Made (and Effect on this and Other Programs)

Change Made By Date
Change Tested By Date
Change Posted to RBun Manual By Date
Change Posted to Operator Instructions By Date
Review of Changes By Date

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC |S Examination Handbook 12-20

Figure 12.9
Sample Change Request Form

PROGRAM CHANGE REQUEST

REQUESTOR — COMPLETE ITEMS 1-5; SEND YO SYSTEMS LIBRARY, 2-95.

REQUEST NO. OATE COMPLETED

PROJECT NO. DATE i4PLEMENTED

1. Insoues'ronwass REQUESTORSL

| DATE RECEIVED DATE CANGELLED

APPROVED BY ASSIGNED TO

2 lMMEOFmﬂONTG‘mED

DATE

DATE ASSIGNED

| DATE APPROVED

STATE AEQUEST AND REASONS (INCLUDE COST BAVINGS OR OTHER BENEFITS)

4. | DESCRIBE THE MODIFICATION 1M DETAI {IF NEGESBARY, GONTINUE ON BLANK PAGES)

OETANTHE UG NATUR E OF YOUR SYSTEMS DEVELOPMENT PRIORITIES COMMITTEE
REPRESENTATIVE TO AUTHORIZE THE SYSTEMS DEVELOPMENT DIVEKON TOSTUDY
AND ESTIMATE THE COST OF IMPLEMENTING THIS REQUEST.

SYSTEMS DEVELOPMENT DIVISION

PRIORITY REPAESENTATIVESSIGNATURAE

PROJECTLEADER MANPOWERCOST

MACHINE COST

TOTAL CO8 DATE UNT

APPROVED BY: PLEASE iNITIAL DATE AND FORWARD WHEN ALL APPROVALS ARE OBTAINED. RETURN TO SYSTEMS LIBRARY 2-85 IF YOU DO NOT GET APPROVAL FOR THIS
REQUEST, AETUANITTO PROVECT LEADER NAMED ABLVE WITH A MEMO STATING THE REASONS FOR DISAPPROVAL

ADDITIONAL APPROYALS

REQUEST MAIL CODE INITIAL DATE

MAIL CODE INITIAL DATE

PRIORITY REPRESENTATIVE

REPORT COORDINATION

CENTRAL DATA PROCESSING

AUDIT DEPARTMENT

performed depend on the size and complexity of the
data center and if the documentation is maintained
on paper, on-line, or a combination.

The extent of the librarian function depends on the
scope of information systems activities, the
frequency of reference to library materials, whether
processing functions are centralized or
decentralized, the internal structure of the
information systems department, and the medium
on which the documentation is maintained.
Specific librarian functions may include:

Review of documentation at system
development time to ensure adherence to
standards and appropriate authorization of
exceptions.

Control and storage of acceptable

documentation.
Handling of documentation revisions.

Notification and distribution of documentation
to interested or authorized parties.

Current maintenance of all documentation.

In small installations, the documentation library
areamay consist of afew filing cabinetsin the
programming area, maintained by a clerical person
or the programming supervisor. In larger
installations, it may be a separate area staffed by a
full-time librarian particularly if paper documents
are required for all forms of documentation. Such
libraries may employ control and access procedures

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-21

similar to those exercised over datafile libraries.
Now that many institutions are using on-line
facilities for the bulk of documentation, filing
cabinets may be appropriate to maintain
documentation. However, in al instances, the
documentation library or storage areas should be
secured to prevent unauthorized access.

Documentation must be kept current. Standards for
documentation must specify the authority and
techniques for maintenance and control;
responsibility for maintaining program
documentation must be assigned.

Actual techniques for revising the documentation
will depend on its structure and changes to it.
Documentation can be revised either by
programmers or by technical writers. Explicit rules
for amendments must be established to prevent
needless paper accumulation. Accordingly,
provisions must be made for:

» Changes which can be made directly on existing
paper documentation (if applicable) without
making the end result illegible or unintelligible.

e Additions which amplify, clarify, or augment
existing documentation without making the
present content obsolete.

o Changes which are a complete or a partial
replacement of existing documents.

¢ Changes which can be made to on-line
documentation.

Documentation plays such avital role that
procedures to duplicate essential portions should be
established. The duplicates should be retained in
an off-premises storage facility and must be
periodically updated. If documentation ison-line,
the back-up of thisinformation on magnetic media
can be accomplished easily.

USER MANUAL DOCUMENTATION
User manual's enable the user to understand,
approve and operate the system. Lack of user
involvement may result in the user:

* Ingtituting inadequate remedies to problems,
thus negating certain controls within the system.

» Contending that the whole system is defective.

» Placing complete reliance on the information
systems department for controlling the operation
of the application.

Continuing user involvement is of primary
importance; therefore, user aids or manuals are
essential aspects of program documentation. The
responsibility for writing user manuals and user
manual standards should be established formally.

A user manual could be divided into two main
areas: input and output. The manual should be
written in simple, nontechnical language, and not
directed to a particular audience. When necessary,
illustrations should show proper completion of
forms, workflow, and descriptions and explanations
of reports generated. When forms are illustrated,
they should contain representative sample entries
and instructions keyed to those entries. Every
transaction code should be described in sufficient
detail to allow the user to fully understand how to
use the application system. Output reports should
include detailed explanations of special codes, flags
and reconcilement procedures necessary to balance
the report user controls. The output reports need to
be reviewed periodically to determine if they are
being used as intended, or if they should be
modified or discontinued.

PURCHASED SOFTWARE
DOCUMENTATION

A prime consideration in any purchased packageis
documentation. If a packageis not well
documented, the user will not understand the
techniques and methods used. The package may be
less effective and efficient as well as difficult to
maintain if program changes are to be performed by
the purchasing institution. The format and content
of this documentation, however, probably will not
be written according to the financial institution's
information systems standards. The documentation
of program packages under consideration must be
reviewed prior to purchase to determine if the
product generally meets the financia institution's
minimum documentation standards. Such
precautionary measures a so should be applied to
the purchase of standard utility programs, such as
sort or merge programs.

Purchased software will be subject to subsequent
modification by the user or vendor. All changes
made to application programs and operating
systems must be documented according to

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-22

prescribed standards. When contracts are written to
include continuing maintenance of the software by
the vendor, the vendor must have the technical and
financial ability to perform thistask. Thisis
especially important for installations that do not
have an adequate programming staff. Some
vendors provide documentation on magnetic media
and this information may be loaded into the on-line
documentation system for reference purposes. A
potential problem in documentation can arise if the
purchased package requires modification before it
isinstalled. It must be determined up front who
will modify the documentation with the vendor
and/or the purchasing ingtitution involved in the
process.

DATA BASE MANAGEMENT SYSTEMS

Data base management systems are playing an
increasing role in modern information processing.
A data base is a collection of nonredundant,
interrelated data elements that are acted upon by
one or more application programs. Data elements
are organized to form distinct data files that are
either relational, hierarchial, or network
interconnected in nature. Datafiles are identified
by a unique key, such as an account or employee
number, and may contain pointers or indicesto all
of a customer's accounts. Data is accessed through
a common software controller, commonly referred
to as a data base management system (DBMS).
Generally, the DBMS is provided by the
manufacturer or an independent software vendor.
Through the controller, an application program can
access any relevant record regardless of itslocation
or format. The data manipulation language (DML)
interfaces between the application program and the
DBMS to perform various functions such as
opening afile, inserting arecord, or changing data
An example of DML isIBM's Structured Query
Language (SQL) which is used with IBM's DB2
relational database.

The sophisticated features of a data base, if
properly designed, can greatly benefit afinancial
institution. However, a data base also can contain
some disadvantages management should be aware
of. Advantages and drawbacks include:

Advantages

* Reduction of dataredundancy. Inamultiplefile
system, the same data items are often stored in
separate files. Such storage creates an updating

problem since each file must be separately
updated whenever a change to the data occurs.
To the extent possible, a data base system only
will store each item once, thus eliminating
multiple updates and saving storage space.

* Program and dataindependence. Previoudly, it
was necessary to define format and storage
characteristics of data within each program. A
data base system separates the physical storage
and accessing functions. Therefore, the data
base can change and grow without necessitating
an update to each application program. In
addition, the programs deal with data content
rather than location. Thisindependence can
facilitate moving the applications from one
computer to another.

o Standardized data definition and documentation.
These functions are standardized by using a data
dictionary and controlled by the data base
administrator.

Unlimited number of datarelationships. Since
pointers may be used to associate one file with
another, the number of data relationships
possibleisunlimited. More dataistherefore
available to individual programs.

* Program development costs. A data base
reduces the need for separate storage and
retrieval procedures. Inconsistencies between
individual files with redundant contents are
reduced and program maintenance costs should
decline with the elimination of some
mai ntenance procedures.

Disadvantages

» Dataintegrity and data relationships. Since data
items are normally stored only once within the
data base, all users of adataitem will access the
sameitem. Anincorrect dataitem will create an
error for, and have a major impact on, all users.
Asthe data base is enlarged, relationships each
item has with the other items also increases.
Therefore, those relationships must be defined
accurately and each item in the relationship
must always conform to its defined role.

* Problemsfor the auditors. Auditing a data base
management system requires more sophisticated
audit techniques. Traditional sequential file
audit retrieval packages will not access data base
management systems directly. Audit software

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-23

for data base systems now is available but a
learning curve will be in effect.

Cost offsets with data bases. Increased costsin
some areas may offset any cost reductionsin
program development. Increased costs may
result from:

- DBMS development.
- Additiona equipment.
- Increased planning.

- New and elaborate controls, requiring a more
sophisticated programming staff.

- Changes and adjustments to meet
technological advances.

Data security or privacy considerations. Files
for al applications are generally mounted and
available to application programs at all times.
This differs from batch environment files which
are dismounted and secured in alibrary when
not in use. Risk exposure is often heightened by
diffusion of file security responsibility. In batch
systems, the files are the property of the various
user departments. In aDBMS, data belongs to
everyone so that no one user is solely
responsible for its safety. Thus, control over
these files rests with a central authority — such
as the data base administrator - who determines
who has access and the level of access
capability, e.g., addition, deletion, modification,
or read only. Because the dataisavailableto
many users from numerous terminals, it should
be determined if levels of accessto key fields
are adequately controlled to maintain certain
security and privacy of data.

Destruction of files. Since massive volumes of
data are difficult and costly to copy, data base
systems when updated often destroy old files.
This makes it more difficult to backup such files
and requires periodically dumping files and
saving transactions. Because of the expense and
difficulty of such backup techniques, only
critical data may be backed up; other less critical

datais subject to destruction and loss.

o Software failure/slow responses. Because a data
base system is so complex, thereis a high
probability of breakdowns. Precautions to avoid
breakdowns can add another layer of overhead
to the software which can slow response time.

Types of DBMS
The main types of data base structures are:

eHierarchical - represented as a tree with the root at
the top and data located where a tree would branch.

Figure 12.10
Sample Hierarchical Data Base

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-24

Figure12.11
Sample Network Data Base

Similar to an organization chart, the lower data
element is dependent on the one above it and a
parent-child relationship can be envisioned as the
data path. Each parent can have more than one
child, but a child can have only one parent (Figure
12.10).

» Network - represented as links of parent/owner

and child/member record types. Pointers can go

in aforward or reverse direction and a
child/member record can have more than one
parent/owner. Within a network any data
element can be connected to another one (Figure
12.11).

* Relational - represented as a table of columns
and rows with columns corresponding to records
and rowsto fields. Paths or links are not pre-
defined and no pointers are needed since
relationships are defined at the data value level
(Figure 12.12).

Refer to Figure 12.13 for examples of software for
each data base structure. It is evident that relational
data bases are becoming more prominent.

Data base systems traditionally have been
centralized on one computer with data, programs
and directories residing on a central processor. Ina
Distributed Data Base system, the data, program
and directories can be spread among different
processors and can be useful for organizations
geographically dispersed or functionally diverse.

The essentials of data base security are:

» Data should be protected from fire, theft and
other physical hazards.

Figure 12.12
Sample Relational Data Base

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-25

Figure 12.13
Example of DBMS Software

Hiararchical Network Relational
IMS {IBM) CA-IDMS/DB DBZ (IBM)
{Computer Associates)
SYSTEM 2000 (INTEL) TOTAL {Cincom) SQL/DS (IBM)
DMS 1100 (Unisys) ORACLE (Oracle Corporation}

RDB (Digitai Equipment Cor-
poration)

CA-DATACOM /DB (Com-
puter Associates)

ADABAS (Software AG)

MODEL 204 (CCA)

INGRES (Ingres Corporation}

INQUIRE {Infodata Systems}

¢ Data should be reconstructible to recover from .
destruction or loss (intentional or accidental).

» Data should be auditable for prompt detection of
loss.

¢ The system should be tamper proof to prohibit
programmers from bypassing controls.

o Usars must be identified before being granted
access.

¢ The system must be able to check that user actions
are authorized.

e User actions should be monitored so that ¢
suspicious or unauthorized behavior can be
investigated.

Threats present in all processing environments may .
be heightened by certain features of data base
systems. These threats include:

¢ Deédliberate internal threats.

e A trapdoor or window built into the system by a
programmer. Provisions must be made for
flexibility in the operating software, particularly in
a system as complex as data base management.
Since this software must be programmed for
change, it is vulnerable to unauthorized attempts
to penetrate the system.

Dumping portions of core storage to obtain
sensitive information, codes, passwords, etc.
(This could be a profitable mode of attack because
of the exposure of al files, and the heavy reliance
on access codes to control input to the system.) A
countermeasure is to encrypt sensitive information
so that it is meaningless if dumped directly from
storage.

Misuse of another person's authorized access code,
password, etc.

Deliberate external threats.

Obtaining access codes or other restricted data by
obtaining copies of hard-copy output from trash
cans, dumpsters, etc.

Obtaining access codes or other restricted data by
wiretapping.

Accidental threats.

Faults in the data communication system leading
to erroneous data in the data base.

Hardware or software failures leading to a
breakdown of a built-in security feature. For
example, secret data - such as passwords - may
be printed as part of a core dump during an
abnormal termination or arecovery.

Program Control

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC |S Examination Handbook 12-26

Data base management systems must rely heavily on
software controls (as well as terminal hardware and
physical controls) to compensate for loss of library
controls present in the normal file-based systems.
Software controls are divided into:

e Authorization controls - Specify whether access
will be granted to the system in general, and to
individual programs, files, or records. Also
specify the functions that can be performed, e.g.,
read, write, modify.

* Processing controls - Include edit checks, such as
validity tests, reasonablenesstests, range and limit
tests, and produce afull audit trail.

Control Differences Between Data Base and File
Systems

File systems may use many physical controls that are
not as readily available in data base systems.
Therefore, data base systems rely more heavily on
control over access to the input devices and on
internal software controls. These controls include:

« Controls over input:

Physical terminal locks.

L ocks on communications link with computer.

Terminal identification code/procedure.

User identification code/procedure.
- User security code or password.

¢ Interna software controls:

- Program locks (specific users may be
prohibited from accessing specific programs).

- File locks (specific users may be prohibited
from accessing specific files).

- Record or field locks (specific records or files
may be restricted from access by specific user).

- Tests of result (the processing result may
prohibit both further action and the
transmission of the result back to the user).

Files that require a high degree of security can be
maintained on disk packs separate from other data

base files. They can be mounted at only certain times
of the day when high-security jobs are scheduled to
run. When dismounted, they can be protected by
rigorous security measures.

If itisnot practical to copy large volumes of data for
backup, or if multiple generations of files are not
produced by the system, it is still possible to provide
backup. Destructively updated files should be
dumped periodically with the related transactions for
the period between dumps. The files may be
recrested from the last dump. However, alarge data
base usualy will not be copied in its entirety.
Therefore, it should be divided into vital and nonvital
records and files, with emphasis placed on copying
the vital information.

Certain data may change so infrequently that it is
rarely copied and can be easily updated from
transaction records. Some systems keep duplicate
copies of critical file data and update both copies. If
one file becomes unavail able or damaged, the second
copy is immediately available. This may be
important for certain critical files in a real-time
system. However, the technique provides no
protection against program errors since both copies
can be damaged by the faulty program. In this case,
it will be necessary to reconstruct from earlier file
copies.

Data Base Administrator — Duties

The data base administrator serves as arbitrator and
mediator in the development, use, and maintenance of
the data base. The administrator coordinates the
activities of the organization as they impact on the
data base.

Specific functions of the data base administrator
include:

o Datadefinition:

Naming data item types.
- Detailing dataitems in the data dictionary.
- Combining data items into groups.

- Edablishing the logical relationships between
groups.

- Establishing retention periods.

- Establishing standards for data records and

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12- 27

files used by programmers.
o Database design:
- Physical structuring of data on media.
- Developing access methods.
- Designing restart and recovery procedures.

- Developing security measures and techniques
for maintaining privacy.

o Dataoperations:
- Investigating all data errors.
- Supervising restart and recovery operations.
- Supervising reorganizations of the data base.

- Controlling and documenting changes to the
data base and educating users.

o Security:
- Investigating all known security violations,

- Investigating suspicious activity noted on
exception reports.

- Establishing an authorization hierarchy, i.e.,
who is entitled to access what data

- Maodifying security codes, passwords, etc., as
required.

- Monitoring
procedures.

compliance with security

- Conducting periodic security audits to test
compliance.

The data base administrator may have one or more
assistants to handle detail work, or the overal
function may be divided among severa people of
relatively equal authority. The latter concept is
particularly sound since different talents and
temperaments are needed for designing operations
and overseeing their day-to-day performance.

An effective separation of the data base
administrator's duties must exist. Although this
person is the guardian of the installation's
information, access to application-related data should
not be allowed. Access to source listings and other
application program documentation also should be

controlled.
Data Dictionary/Director System (DD/DS)

A data dictionary is a central catalog containing
source data definitions for an organization. It also
includes:

e Information confirming the existence and
availability of data.

* Precise data item formats, segments, and other
data base design mechanisms.

e Computerized and non-computerized data,
conventional files, and data bases (the current
state of data dictionary development normally
includes only data base information).

o Object data definitions plus physical storage
locations and data access methods.

Although most DBMS have built-in directories that
function separately from the DD/DS, a DBMS
generally does not store source definitions and
usualy maintains object definitions that relate to the
data base only. A DD/DS may contain the source
location for both conventional files and the data base
and maintain some object definitions that are not
awaysfound inaDBMS, i.e., security access control
methods at the dataitem level. Therefore, it tends to
supplement rather than duplicate the library features
of aDBMS. Datadictionaries can be either active/-
integrated or passive/non-integrated. Active DDs are
updated automatically whenever a changeismade in
the DBM S whereas passive DDs are non-integrated
and must be maintained separately.

Standards and procedures must ensure that changes to
the DD/DS will be monitored, documented and
communicated to the proper personnel. Changes
must be:

* Authorized through the data base administrator.
* Approved by users.
¢ Amended in user documentation.

e Adequately tested for impact on usage and
linkages.

¢ Reviewed to ensure that audit trails and controls
are maintained.

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-28

Data Base Monitoring

An essential feature of a data base system should be
adequate transaction logs or journals. Some of the
items that may be recorded and possible uses of such
entries appear in the Sample System Protection and
Auditing Logs as seen in Figure 12.14. These logs
should be detailed enough to facilitate recovery from
minor hardware failures, software failures and

incidents where data base files have been damaged or
destroyed. They should include the application
transactions and the administrative and operator
messages accompanying the transmission during
processing.

In addition, alog or journa provides an audit trail to
trace the history of a transaction and investigate the

Figure12.14
Sample System Protection and Auditing Logs

To permit recovery whan it is found that
a user has incomectly updated or deletsd

a record

To provide an audit trail for an auditor 1o
follow the history of a transaction

To investigale the causes when a record
is found 1o be faultly

To assisl in correcting the file when a
program has been damaging data

To correct false information which has

been ser to systam users
To recover from the loss of a fil-aclion

To monitor the way \he system is being
joumnal

used (as an aid o dasign)

To assist in corract recovery from a

highlight possible breaches of security
syslem failure

To monitor procedural violations to

To assist recovery from massive file
destruction

Transaction journal
Incoming inquiry transaction
Inceming update transaction
Transaction type
Transaction number
Originating terminal
Originating oparator
Time and dale
Response to inquiry transaction
Response to update transaclion
Indication that response was received cormaclly
Procedural violations on input
Record of start and end of file

reconstruction

Note of completion of update

TANNNS N
TANNNTN

AN
SN

File-action journal

Transaction number

Time and date

Addresses of tems updated

Contents of items before they are updated

Contents of lems after they are updated

Note of completion of update

Lis!t of programs used for update

Full conlents of any records created

Fulf conlents ol any records deleled

Details of any indices opened or closed

Frocedural violations deleted during update
of procassing

Contenis of limes comecied before comection

Contents of times correcied afier comadlion

Indication of start and end of comaclion run

SSNON N
SNONTN

NN

TANNT S

AN

A S T i ¥

NN

NSNS N
SNON
TRNN N

NANTASN TN

NANNTANANNNN

~

AN

NNONN
SERNKANNONTN
N N

SN
NANKN

The above information may all appear on the same joumal,

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-29

cause of an error. Thelog aso can highlight system
utilization data and procedural violations that may
indicate security breaches.

Some of the more advanced DBMS provide such
logging features automatically; in others they are
optiona or must be developed by the user. More
sophisticated control features provide automatic
shutdown of disabled components and automatic
transfer of functions to properly operating
components.

COMPUTER-AIDED SOFTWARE
ENGINEERING (CASE)

A software development technology known as
Computer-Aided Software Engineering (CASE) may
be used in financia institutions with large systems
and programming staffs. CASE is used to automate
software development process and maintain software
systems in order to reduce programming Ccosts,
increase productivity, and produce reliable systems
that satisfy users needs. CASE technology provides
a structured approach to designing information
systems that meet business needs, manage
information and share programming resources.

CASE uses a variety of process-modeling tools to
automate systems design in all phases of the systems
development life cycle (SDLC), e.g., data flow
diagrams, structure charts, structure diagrams, data
model diagrams, work breakdown structures, etc.
Other products or tools provide the capability to
create working models of a system's data entry
screens, as well as layout of reports, for prototype
testing by user departments. Structured system
documentation can be automatically created in both
hard copy and electronic form throughout the design
and testing process.

CASE tools may be used separately or in an
integrated fashion to reduce redundancy and increase
coordination between programming tasks. The use of
CASE toolsin the early or late stages of the SDLC
process are frequently referred to as UPPER CASE
tools or LOWER CASE tools as described below.

 UPPER CASE refers to tools used in the early
phases of systems design that relate to the
requirements, analysis and design portions of
SDLC.

« LOWER CASE refers to tools used in the later
phases of the SDLC cycle that relate to natural

language programming, documentation, code
generators and testing.

CASE technology is often viewed as a solution to
reduce software development problems. However, if
not used with care, CASE tools can increase rather
than reduce the risks associated with software
development. Senior management and M1 S directors
need to be aware of these risk areas and controls.

Some common risk areas associated with the use of
CASE technology are:

e Highly structured systems development -
Institutions may move too quickly from an
unstructured development approach to a highly
structured CASE environment. CASE technology
can be aradical change in the way systems are
developed and tested. Systems and programming
staffs may not adopt the processes necessary to
implement CASE technology. Replacement of
the old methods or simply implementing a
methodology where none existed before cannot be
accomplished quickly. Full CASE technology is
generally implemented over a period of time to
ensure staff and user departments are adequately
trained in CASE.

» Change controls - An institution's use of CASE
tools may affect the integrity of change controlsin
theingitution's SDLC. The CASE products must
beingtalled and administered properly. Generated
code must be controlled by a sound change
control process to assure it does not bypass
control features that would allow a mismatch of
source and object code.

e Unclear purpose - Management may fail to
identify and quantify the purpose of acquiring and
using CASE tools.

e Lack of standardization - CASE tools are not
standard among vendors. CASE tools from one
vendor may not be able to link to CASE tools
from another vendor in the various stages of the
SDLC. New tools on the market offer some
integration, but only if the complete set is
purchased. Typically, links between CASE tools
and existing organization databases, dictionaries,
and programming tools are inadequate, if they
exist at all.

o Lossof CASE repository files - If critical filesare
destroyed, lost, or corrupted, the ability to
regenerate any software may be lost.

* Project Selection - The project selected for

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-30

proving the value of CASE tools can be critical to

the long term acceptance of CASE technology.
Theinitia project should not be one that is critical

to the organization, has high visibility, and short
deadlines since there is a high learning curve ¢
during the transition to CASE tools. Likewise,
attempting to use CASE tools to rescue a project

that is over budget and late can be a mistake.

.+ Changein development process - Implementation
of CASE programming tools will fundamentally
ater the organization's software development
culture and processes. Traditional SDLC concepts
and procedures will have to be changed to take
advantage of CASE. CASE methodology is
highly structured and generaly requires more
discipline than developers and programmers may
have been used to.

e Highinitia cost - CASE tools and associated staff
training can be costly. Costs may appear to be .
initially high when weighed against early results
before personnel have learned to use the tools
efficiently and attained expected results.

* Management commitment - CASE cannot be
implemented halfheartedly or part time. It
requires a clear and strong management
commitment and direction for success.

e Volume of output — A significant amount of
documentation is generated when using CASE .
technology. The resources required to keep up
with successive generations of documentation in
order to know which change is in effect may
require more staff time than expected.

e Training - Learning how to effectively use the
new CASE tools requires a significant
commitment of resources. This can lead to
providing limited or no training in the hope that
df-instruction will be sufficient; however, thisis
rarely the case. ¢

In order to reduce the above risks and ensure
maximum benefits, management should consider the
following controls. These controls should not be
regarded as dl-inclusive nor should they be viewed as
applicable in every situation.

o Clearly identify purpose and criteria for CASE
Tools - Unlessthereisaclearly defined reason for
acquiring CASE technology and specific .
requirements which must be met, there is reduced
likelihood that it will be used efficiently or

effectively. Often acost/benefit analysis will help
to clarify purpose and goals. Selection criteria
should be determined prior to vendor discussions.

Integrated CASE tools - Since CASE standards
are incomplete today, the best way to ensure a
smooth and automated interface between various
tools is to consider purchase of CASE tools for
the various stages of the SDLC from the same
vendor and insist on demonstrable compatibility.
If only selected CASE tools are going to be used,
vendors should be selected that offer afull range
of tools to reduce the likelihood that future CASE
tools will be incompatible. 1f CASE tools are
acquired from separate vendors, or one at atime,
without regard to future interface, the likelihood
that they will be incompatible is extremely high,
with the result that a major benefit of CASE will
have been lost.

Protect the CASE repository - The CASE
repository database should be backed up regularly,
i.e, daily, secured from unauthorized access, and
have controls over successive versions of data
related to updated or revised development. The
database usually contains all of the design and
program data in order to generate and update
software being developed. If this databaseis lost,
the system progress to date and the ability to
continue development also will be lost.

Project sdlection - Until staff has experience with
CASE tools, projects which have a low priority
and are not time sensitive should be selected. If
time pressures warrant, previous development
methods can be reverted to. Likewise, projects
which have high visibility run the same risk
because of the pressure to meet deadlines. When
CASE tools are not implemented successfully,
benefits will not be realized, and acceptance will
not be achieved.

Determine systems development methodology
changes - In addition to evaluating the changesin
the development process required by the use of
CASE toals, the flexibility of the existing policies
and procedures to make necessary changes should
be evaluated. Ample time should be allowed for
changes to take place and expected benefits to be
redized. It takestime for staff to learn to use the
CASE tools effectively and efficiently.

Quantify the increased productivity of CASE
tools - The current productivity rate should be
measured and compared with the productivity

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC IS Examination Handbook 12-31

rates of CASE tools under consideration. The
return on investment should be calculated to
indicate if CASE tools should be acquired.

Promote involvement throughout the organization
- Once management decides to implement CASE
technology tools, this commitment must be
communicated and shared throughout the
organization.

- Senior management commitment and support
of CASE technology are essential for success.
Management must clearly communicate their
intent to implement CASE tools and be willing
to accept a long-term payback rather than
quick-fix results.

- Programmers and systems designers using the
CASE technology should understand what
effect CASE tools will have on their work.
They are directly affected and their level of
acceptance (or lack of it) in learning new
concepts can determine the success of CASE
projects.

- Theinterna audit department (IAD) should be
involved throughout the CASE implementation
project. Inthe early stages, IAD can evaluate
the proposed changes to modify the SDLC

processes. IAD also can evaluate how well
CASE was implemented and suggest
improvements. CASE tools often generate

genera documentation which can be used as
part of any audit. Repository reports can give
the auditor an understanding of the systems
devel opment process.

- The users probably will see parts of the
proposed system or an early prototype sooner
than under the traditional SDLC devel opment
process. They should be prepared for that
early involvement and be ready to actively
participate in testing and refining early models.

Volume of output - Output from CASE tools
should be retained on electronic media rather than
hardcopy wherever possible. Strict procedures
should be developed to control versions of each
generated system or subsystem. Only those
documents that are essential for current
development or historical purposes should be
retained and the rest discarded. Documentation
stored on e ectronic media should be backed up on
aregular basis.

Training - CASE tools cannot be learned
effectively from manuals or do-it-yourself efforts.
Professional training is essential for mastering the
tools and moving quickly up the learning curve.
The cost of trial-and-error development can be
much higher with accompanying delays.

SYSTEMS DEVELOPMENT AND PROGRAMMING
1996 FFIEC | S Examination Handbook

12-32

